If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-2x-165=0
a = 5; b = -2; c = -165;
Δ = b2-4ac
Δ = -22-4·5·(-165)
Δ = 3304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3304}=\sqrt{4*826}=\sqrt{4}*\sqrt{826}=2\sqrt{826}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{826}}{2*5}=\frac{2-2\sqrt{826}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{826}}{2*5}=\frac{2+2\sqrt{826}}{10} $
| 3.16w=1.6w+24 | | 1=c3-1 | | 8y=9.75y | | 4x/2=3x | | z+z=z+41 | | .8(10x+21)=4.3(.2x+5) | | 0=-3x^2-12x+15 | | 6+5(x-7)=68 | | 5x=5/2x+11 | | 85+5x-5+6x-10=180 | | 14x=1510 | | 4=2t+2 | | -4+-5(x+4)=11 | | (p-25)+p=p+36 | | 9x-5+8x+10+39=180 | | /y-9=8 | | 6y−3=−6y+3 | | 15=−10x+45, | | -y+3/49=-40 | | 14x-2+7x+14=180 | | 15=−10x+45 | | 14=s2+12 | | -x–9=-2+12 | | -4x^2+12x-36=0 | | 50z+240=32z+380 | | 31+2q=77 | | p-25+p=p+36 | | 2=-2/5+x | | 171=76-y | | 8(w-87)=56 | | 5x+10x-18=12x-24+3 | | 4.38x+9=19.1844+3x |